满液式蒸发的基本方式是蒸发器内的内外强化传热管浸没在制冷剂液体中,制冷剂吸收管内水的热量后蒸发,它所进行的是一种池沸腾换热。工业工业常被设计成在运行时有1~3排管子露在液面以上,以防止液滴带出,液体沸腾时这几排管子会被蒸气带上来的液体润湿,仍能起传热管的作用。降膜式废水蒸发器的基本方式是制冷剂通过设计在满液式蒸发器顶部的分配器被均匀分配喷淋到蒸发器内的内外传热管上,吸收管内的热量蒸发。相对满液式蒸发器而言,降膜式蒸发具有如下显著优点。①提高换热性能:降膜式蒸发器具有极好的换热性能,特别是在部分负载情况下。主要表现在两方面:一方面充分利用了所有高效传热管的换热面积;另一方面在蒸发压力较低时,满液式蒸发器中液体的静液柱使底部饱和蒸发温度升高(局部饱和压力升高导致饱和温度升高),传热温差减小,导致传热性能下降,降膜式蒸发则不存在这种情况。
载冷剂冻结的可能性。如果蒸发温度低于载冷剂凝固温度,则载冷剂就有冻结的可能性。在载冷剂的最后一个流程中,载冷剂的温度最低其冻结的可能性最大,当用水作为载冷剂时,从理论上来说,管内壁温度可以低到0℃。但为了安全起见,通常使最后一个流程出口端的管内壁温度保持在0.5℃以上。对于盐水作载冷剂的情况,根据同样的道理,应该使管内壁温度比载冷剂的凝固温度高1℃以上。制冷剂在废水蒸发器中的压力损失。制冷剂流经废水蒸发器时引起压力损失,必然使蒸发器出口处制冷剂的压力P2低于入口处的压力P1,从而降低了压缩机的吸气压力,致使制冷能力下降。
适于通入工业废水蒸发器管内空间(管程)的流体:(1)不清洁的流体:因为在废水蒸发器管内空间得到较高的流速并不困难,而流速高时,悬浮物不易沉淀,且管内空间也易于清洁。(2)体积小的流体:因为管内空间的流动截面往往比管外空间的流动截面小,流体易于获得必要的理想流速,而且也便于做多程流动。(3)有压力的流体:因为管子承压能力强,而且简化了壳体的密封要求。(4)腐蚀性强的流体:因为只有管子及管箱才需要用耐腐蚀的材料,而壳体及管外空间的所有零件均可用普通材料制造,所以可以降低造价。此外,在管内空间装设保护用的衬里或覆盖层也比较翻遍,并容易检查。(5)与外界温差较大的流体:因为可以减少热量的散失。
应减小管子和壳体因受热不同而产生的热应力。从这个角度来说,废水蒸发器顺流式就优于逆流式,因为顺流式进出口端的温度比较平均不像逆流式那样,热、冷流体的高温段都集中在一端,低温部分集中于另一端,易于因两端收缩不同而产生热应力。 流量小而粘度大(331.510~2.510Pas)的流体一般以壳程为宜,因在壳程Re>100即可达到湍流。但这不是的,如流动阻力损失允许,将这类流体通入废水蒸发器管内并采用多管程结构,亦可得到较高的表面传热系数。对于有的介质或气体介质,必使其不泄露,应特别注意其密封,密封不仅要可靠而且还要求方便和简单。应尽量避免采用,以降低其成本。以上这些原则有的是相互矛盾的,所以在具体设计时应综合考虑,决定哪一种流体走管程,哪一种流体走壳程。
拼接的管板的对接接口应进行的射线,按JB4730射线检测不低于Ⅱ级为合格。 废水蒸发器管板材料为碳钢,拼接后管板应作消除应力热处理。管孔直径为9.92mm,允许上偏差为+0.4,下偏差为零。钻孔后应检查60°管板中心角区域内的管孔,在这一区域内允许有4%的管孔上偏差比其允许的上偏差的数值大0.15mm。工业废水蒸发器管板与管束是强度胀接的,所以管孔表面粗糙度Ra值不大于12.5μm。胀接时,管孔表面不应有影响胀接紧密性的缺陷。 隔板密封面应与环形密封面齐平,或略低于环形密封面。连接部位的换热管和管板孔表面应清理干净,不应留有影响胀接连接质量的毛刺、铁屑、锈斑、油污等。 胀接连接时,其胀接长度,不应伸出管板背面(壳程侧),换热管的胀接部分和非胀接部分应圆滑过渡,不应有急剧的棱角。
版权所有:无锡市新五环节能科技有限公司
联系人:孙经理
座机:0510-86192004
手机:18914256292
地址:无锡市惠山区藕塘锡陆路1号